Publications

ARTICLES

Saboori, M., Gholipour, J., Champliaud, H., Wanjara, P., Gakwaya, A., & Savoie, J. (2016). Prediction of Burst Pressure in Multistage Tube Hydroforming of Aerospace Alloys. Journal of Engineering for Gas Turbines and Power, 138(8), 082101–082101. https://doi.org/10.1115/1.4032437
Jebahi, M., Gakwaya, A., Lévesque, J., Mechri, O., & Ba, K. (2016). Robust methodology to simulate real shot peening process using discrete-continuum coupling method. International Journal of Mechanical Sciences, 107, 21–33. https://doi.org/10.1016/j.ijmecsci.2016.01.005
Lévesque, J., Mohammadi, M., Mishra, R. K., & Inal, K. (2016). An extended Taylor model to simulate localized deformation phenomena in magnesium alloys. International Journal of Plasticity, 78, 203–222. https://doi.org/10.1016/j.ijplas.2015.10.012
Sabiston, T., Mohammadi, M., Cherkaoui, M., Lévesque, J., & Inal, K. (2016). Micromechanics for a long fibre reinforced composite model with a functionally graded interphase. Composites Part B: Engineering, 84, 188–199. https://doi.org/10.1016/j.compositesb.2015.08.070
Jebahi, M., Gakwaya, A., Lévesque, J., Mechri, O., & Ba, K. (2016). Robust methodology to simulate real shot peening process using discrete-continuum coupling method. International Journal of Mechanical Sciences, 107, 21–33. https://doi.org/10.1016/j.ijmecsci.2016.01.005
Lévesque, J., Kurukuri, S., Mishra, R., Worswick, M., & Inal, K. (2015). Large Strain Behaviour of ZEK100 Magnesium Alloy at Various Strain Rates. In M. V. Manuel, A. Singh, M. Alderman, & N. R. Neelameggham (Eds.), Magnesium Technology 2015 (pp. 191–195). Hoboken, NJ, USA: John Wiley & Sons, Inc. Retrieved from http://doi.wiley.com/10.1002/9781119093428.ch36
Élie-Dit-Cosaque, X. J.-G., Gakwaya, A., & Naceur, H. (2014). Smoothed finite element method implemented in a resultant eight-node solid-shell element for geometrical linear analysis. Computational Mechanics, 55(1), 105–126. https://doi.org/10.1007/s00466-014-1085-2
Saboori, M., Champliaud, H., Gholipour, J., Gakwaya, A., Savoie, J., & Wanjara, P. (2014). Evaluating the flow stress of aerospace alloys for tube hydroforming process by free expansion testing. The International Journal of Advanced Manufacturing Technology, 72(9–12), 1275–1286. https://doi.org/10.1007/s00170-014-5670-5
Saboori, M., Champliaud, H., Gakwaya, A., & Wanjara, P. (2013). Development of an Inverse Method for Material Characterization. Retrieved from https://www.researchgate.net/publication/259948346
Saboori, M., Gholipour, J., Champliaud, H., Gakwaya, A., Savoie, J., & Wanjara, P. (2013). Effect of Material Model on Finite Element Modeling of Aerospace Alloys. Key Engineering Materials, 554557, 151–156. https://doi.org/10.4028/www.scientific.net/KEM.554-557.151
Dano, M.-L., Jean-St-Laurent, M., & Fecteau, A. (2012). Morphing of Bistable Composite Laminates Using Distributed Piezoelectric Actuators. Smart Materials Research, 2012, 1–8. https://doi.org/10.1155/2012/695475
Lévesque, J., Inal, K., Neale, K. W., & Mishra, R. K. (2010). Numerical modeling of formability of extruded magnesium alloy tubes. International Journal of Plasticity, 26(1), 65–83. https://doi.org/10.1016/j.ijplas.2009.05.001
Binette, P., Dano, M.-L., & Gendron, G. (2009). Active shape control of composite structures under thermal loading. Smart Materials and Structures, 18(2), 025007. https://doi.org/10.1088/0964-1726/18/2/025007
Dano, M.-L., & Bourque, J.-P. (2009). Deformation behaviour of paper and board subjected to moisture diffusion. International Journal of Solids and Structures, 46(6), 1305–1316. https://doi.org/10.1016/j.ijsolstr.2008.10.035
Lévesque, J., Hermawan, H., Dubé, D., & Mantovani, D. (2008). Design of a pseudo-physiological test bench specific to the development of biodegradable metallic biomaterials. Acta Biomaterialia, 4(2), 284–295. https://doi.org/10.1016/j.actbio.2007.09.012
Dano, M.-L., Kamal, E., & Gendron, G. (2007). Analysis of bolted joints in composite laminates: Strains and bearing stiffness predictions. Composite Structures, 79(4), 562–570. https://doi.org/10.1016/j.compstruct.2006.02.024
Dano, M.-L., Gakwaya, M., & Benjamin, J. (2007). Compensation of Thermally Induced Distortion in Composite Structures using Macro-fiber Composites. Journal of Intelligent Material Systems and Structures. https://doi.org/10.1177/1045389X06074679
Dano, M.-L., & Jullière, B. (2007). Active control of thermally induced distortion in composite structures using Macro Fiber Composite actuators. Smart Materials and Structures, 16(6), 2315. https://doi.org/10.1088/0964-1726/16/6/035
Dano, M.-L. (2006). Experimental Characterization of Damage in Random Short Glass Fiber Reinforced Composites. Journal of Thermoplastic Composite Materials, 19(1), 79–96. https://doi.org/10.1177/0892705706055447
Mir, H., Fafard, M., Bissonnette, B., & Dano, M.-L. (2005). Damage Modeling in Random Short Glass Fiber Reinforced Composites Including Permanent Strain and Unilateral Effect. Journal of Applied Mechanics, 72(2), 249–258. https://doi.org/10.1115/1.1839593
Gendron, G., Dano, M. L., & Cloutier, A. (2004). A numerical study of the hygro-mechanical deformation of two cardboard layups. Composites Science and Technology, 64(5), 619–627. https://doi.org/10.1016/j.compscitech.2003.06.002
Dano, M.-L., & Hyer, M. W. (2003). SMA-induced snap-through of unsymmetric fiber-reinforced composite laminates. International Journal of Solids and Structures, 40(22), 5949–5972. https://doi.org/10.1016/S0020-7683(03)00374-3
Girard, C., Dano, M.-L., Picard, A., & Gendron, G. (2003). Bearing Behavior of Mechanically Fastened Joints in Composite Laminates--Part I: Strength and Local Strains. Mechanics of Advanced Materials and Structures, 10(1), 1–21. https://doi.org/10.1080/15376490306740
Girard, C., Dano, M.-L., Picard, A., & Gendron, G. (2003). Bearing Behavior of Mechanically Fastened Joints in Composite Laminates--Part II: Failure Mechanisms. Mechanics of Advanced Materials and Structures, 10(1), 23–42. https://doi.org/10.1080/15376490306738
Dano, M.-L., Gendron, G., & Mir, H. (2002). Mechanics of Damage and Degradation in Random Short Glass Fiber Reinforced Composites. Journal of Thermoplastic Composite Materials, 15(2), 169–177. https://doi.org/10.1177/0892705702015002449
Dano, M.-L., & Hyer, M. W. (2002). Snap-through of unsymmetric fiber-reinforced composite laminates. International Journal of Solids and Structures, 39(1), 175–198. https://doi.org/10.1016/S0020-7683(01)00074-9
Dano, M.-L., Gendron, G., & Picard, A. (2000). Stress and failure analysis of mechanically fastened joints in composite laminates. Composite Structures, 50(3), 287–296. https://doi.org/10.1016/S0263-8223(00)00119-7
Dano, M.-L., Gendron, G., & Picard, A. (2000). Mechanical Behavior of a Triaxial Woven Fabric Composite. Mechanics of Advanced Materials and Structures, 7(2), 207–224. https://doi.org/10.1080/107594100305384
Dano, M.-L., & Hyer, M. W. (1998). Thermally-induced deformation behavior of unsymmetric laminates. International Journal of Solids and Structures, 35(17), 2101–2120. https://doi.org/10.1016/S0020-7683(97)00167-4
Dano, M.-L., & Hyer, M. (1996). The response of unsymmetric laminates to simple applied forces. Mechanics of Advanced Materials and Structures, 3(1), 65–80. https://doi.org/10.1080/10759419608945854

THESIS

Beckelynck, B. (2016). Étude de la délamination sur des matériaux composites tissés taffetas : Essais de caractérisation et simulations numériques. Université Laval, Québec. Retrieved from http://hdl.handle.net/20.500.11794/26622
Verreault, N. (2015). Étude des contraintes et des déformations induites thermiquement dans des tubes en matériau composite. Université Laval. Retrieved from http://www.theses.ulaval.ca/2015/31342/
Tcheikh Said, A. B. A. (2014). Développement d’un simulateur de l’atterissage d’un avion. Université Laval, Québec. Retrieved from http://www.theses.ulaval.ca/2014/30539/
Jean-St-Laurent, M. (2014). Effets des cycles extrêmes de température sur le comportement des matériaux composites. Université Laval, Québec. Retrieved from http://www.theses.ulaval.ca/2014/31345/
Berger-Pelletier, H. (2013). Modelling of split Hopkinson pressure bars: Adaptation of a compression apparatus into tension. Université Laval, Québec. Retrieved from http://www.theses.ulaval.ca/2013/28977/
Elie-Dit-Cosaque, X. (2013). Virtual product development and testing for aerospace tube hydroforming industry: improved Non-linear solidshell element. Université Laval, Québec. Retrieved from http://www.theses.ulaval.ca/2013/29892/
Saint-Marc, J.-C. (2012). Development of a ballistic hybrid fabric model for aeroengine fan blade containment application. Université Laval, Québec. Retrieved from http://www.theses.ulaval.ca/2012/28630/
Chaouki, H. (2011). Modélisation du comportement des composites thermoplastiques à renforts continus dans les procédés de mise en forme. Université Laval. Retrieved from http://www.theses.ulaval.ca/2011/27682/
Gauthier, L. (2010). Modelling of High Velocity Impact on Composite Materials for Airframe Structures Application. Université Laval, Québec. Retrieved from http://www.theses.ulaval.ca/2010/27449/
Jutras, M. (2008). Improvement of the characterisation method of the Johnson-Cook Model. Citeseer, Québec. Retrieved from http://www.theses.ulaval.ca/2008/25087/
Binette, P. (2008). Contrôle actif des déformations induites par un gradient thermique dans une plaque sandwich à l’aide de piézocomposites. Université Laval, Québec. Retrieved from http://www.theses.ulaval.ca/2008/25272/
La Voie-Perrier, M.-A. (2008). Soft Body Impact Modelling and Development of a Suitable Meshless Approach. Université Laval, Québec. Retrieved from http://www.theses.ulaval.ca/2008/25507/
Bourque, J.-P. (2008). Étude des déformations hygromécaniques dans des feuilles de papier multicouches. Université Laval. Retrieved from http://www.theses.ulaval.ca/2008/25605/
Lévesque, J. (2007). Modélisation et simulation du comportement des alliages de magnésium lors de la déformation à chaud. Université de Sherbrooke, Sherbrooke. Retrieved from http://savoirs.usherbrooke.ca/handle/11143/1841
Julliere, B. (2006). Contrôle actif à l’aide de piézocomposites des déformations induites thermiquement dans les matériaux composites. Université Laval. Retrieved from http://www.theses.ulaval.ca/2006/23611/
Gakwaya, M. (2006). Compensation des déformations induites thermiquement dans les matériaux composites à l’aide d’un piézocomposite. Université Laval. Retrieved from http://www.theses.ulaval.ca/2006/23590/